
A phenomenological model of ferromagnetic martensite

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys.: Condens. Matter 10 4587

(http://iopscience.iop.org/0953-8984/10/21/015)

Download details:

IP Address: 171.66.16.209

The article was downloaded on 14/05/2010 at 16:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/10/21
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter10 (1998) 4587–4596. Printed in the UK PII: S0953-8984(98)87885-5

A phenomenological model of ferromagnetic martensite

V A L’vov †‡‖, E V Gomonaj§ and V A Chernenko‡
† Department of Radiophysics, Taras Shevchenko University, Glushkov Street 2, Building 5,
252127 Kiev-127, Ukraine
‡ Institute for Magnetism, Ukrainian Academy of Sciences, Vernadskii Street 36, 252680 Kiev-
142, Ukraine
§ Department of Physics and Engineering, Kiev Polytechnic Institute, Peremogy Street 37,
Building 1, 252056, Kiev-56, Ukraine

Received 25 September 1997, in final form 18 December 1997

Abstract. The ferromagnetism of the inhomogeneous crystalline structure arising below
the temperature of the martensitic phase transition is considered using a phenomenological
expression for the Helmholtz free energy of a cubic crystal. The magnetic anisotropy of the
martensitic structure is related to the order parameter of the ferroelastic phase transition. The
expressions for the static magnetic susceptibility and for the magnetization of the martensite are
derived. The theoretical results are compared with the experimental data known for Ni2MnGa
alloy. The magnetoelastic constant and the constant of strain-induced magnetic anisotropy of
this alloy are estimated from the experimental magnetic field dependence of the magnetization.

1. Introduction

A martensitic phase transition is associated with the spontaneous deformation of the crystal
lattice below the transition temperatureTM . The high-temperature cubic phase (austenite)
is spatially homogeneous, while the state arising atT < TM (martensite) is inhomogeneous.
The spatial structure of martensite is governed by the condition of self-accommodation of
the spontaneous strains. Some materials undergoing martensitic transitions are ferromagnets
with Curie temperaturesTC > TM , and, therefore, the ferromagnetic martensites appear
below TM . Ferromagnetic martensites have been observed among Fe- and Ni-based shape
memory and superelastic alloys [1–8].

Martensitic transitions are accompanied by pronounced anomalies of the magnetic
properties of the ferromagnets. In particular, sharp changes of the spontaneous
magnetization, magnetic susceptibility [1–3, 5, 6], and magnetostriction [7, 8] were observed
in the vicinity of the phase transition temperatureTM . These effects are of interest in view of
the possible applications, e.g. in devices utilizing the large strains induced by the magnetic
field [7].

In the present paper we intend to develop a phenomenological model of a ferromagnetic
martensite and to apply this model to the stoichiometric and nonstoichiometric Ni2MnGa
Heusler alloys withTM = 202 K, TC = 376 K [1] andTM = 285 K, TC = 375.5 K [5],
respectively.

The intermediate phase (the precursor) is observed in Ni2MnGa alloy atTM < T <

T1 = 260 K [9–12]. The periodic displacements of the atoms from the initial positions
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in the cubic crystal lattice arise atT = T1, but the average strains stay equal to zero in
the intermediate phase [11]. The transition to the intermediate phase is accompanied by a
softening of the phonon spectra [9–11] and elastic moduli [13]. By contrast, the anomalies
of the spontaneous magnetization and magnetic susceptibility were not observed in the
vicinity of the intermediate phase transition [1, 3]. This means that the magnetization of
the alloy is not sensitive to the appearance of precursor phenomena [11] but is strongly
influenced by the spontaneous strains arising atT = TM [3].

The proposed theoretical model relates the magnetic anomalies accompanying cubic–
tetragonal martensitic transitions to the spatially inhomogeneous strains arising atT = TM .
The model is based on Landau expansions used by many authors for the description of both
elastic [14] and magnetic [4] subsystems of martensitic alloys (see also the review paper
[15]). After obvious generalization, this model may be applied to the description of twinned
magnetically ordered crystals.

2. The Helmholtz free energy of ferromagnetic martensite

The Helmholtz free energy of a cubic ferromagnet may be written down as the sum

F = Fe + Fm + Fme. (1)

The first term of the sum describes the strain energy and may be expressed as [16]
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where C11, C12, C44, and C ′ = (C11 − C12)/2 are the second-order elastic moduli of
the crystal,a and b are the linear combinations of third- and fourth-order elastic moduli
respectively, andu1, u2, . . . , u6 are linear combinations of strain tensor components:

u1 = (εxx + εyy + εzz)/3
u2 =

√
3(εxx − εyy)

u3 = 2εzz − εyy − εxx
u4 = εyz
u5 = εxz
u6 = εxy.

(3)

The third-order and fourth-order terms depending onu4, u5, andu6 are immaterial as
regards the further analysis, and, therefore, are omitted in (2).

The second term in (1) may be chosen in the simplest form:

Fm = FA −M ·H
FA = K(m2
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(4)

wherem =M/|M |, M is the magnetization of the crystal,H is the external magnetic
field, andK is the magnetic anisotropy constant.

The last term in (1) describes the interrelation between the magnetization and the strains:

Fme = −δ1

[
(2m2
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x)u3+
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]
− δ2(mzmyu4+mzmxu5+mymxu6) (5)

whereδ1 andδ2 are the magnetoelastic constants.
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The isotropic parts of the energiesFm and Fme are immaterial, and therefore are
disregarded in (4) and (5).

The coefficients of the Landau expansion for the free energy of Fe3Ni alloy were
evaluated ‘from first principles’ in [4], but the terms (5) describing the linear coupling
of m2

i anduβ (β = 2, 3, . . . ,6) were disregarded.
In the absence of mechanical stresses, the conditions∂F/∂uβ = 0 are fulfilled, and the

strains of the austenite are caused only by the magnetization of the crystal:

ume2 = (3
√

3δ1/C
′)(m2

x −m2
y)

ume3 = (3δ1/C
′)(2m2

z −m2
y −m2

x)

ume4 = (δ2/C44)mymz

ume5 = (δ2/C44)mxmz

ume6 = (δ2/C44)mxmy.

(6)

Below the temperature of the martensitic phase transition

uβ = umeβ + uMβ (7)

where theuMβ are caused by the strains attributed to the equilibrium values of the order
parameter of the transition.

Figure 1. A schematic representation of the magnetic domain ABCD occupying the martensite
variant formed by the crystallographic domains 1 and 2.

The cubic–tetragonal phase transition with the two-component order parameter(u2, u3)

is a frequently encountered kind of martensitic transition [17]. Let us consider the martensite
variant, which is the periodic structure formed by alternating domains of the tetragonal phase
(figure 1). Letx andy be parallel to the fourfold symmetry axes of neighbouring domains.
The averaged strains̄εij peculiar to such martensitic structure have been analysed by many
authors (see, for example, [18, 19]). Here it is convenient to use the formulae derived
in [20], because these formulae express the strains in terms of the order parameter in the
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explicit form
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whereα and 1−α are the volume fractions of domains, andu0 is related to the equilibrium
value(u0

2, u
0
3) of the order parameter:

u0 = ±2u0
2/
√

3= −2u0
3 = −(a/2b)[1+ (1− 4bC ′/3a2)1/2].

(The plus/minus sign corresponds to thex-domain/y-domain.) The expression foru0 was
obtained on the assumption thatumeβ � uMβ , 3aumeβ /C

′ � 1, and 2bumeβ /a � 1. As far
as we are aware, these conditions are fulfilled for all of the alloys (e.g. for Ni2MnGa,
umeβ ∼ 10−4–10−5 [7], uMβ ' 5 × 10−2 [21]). The ratios of the elastic moduli may be
estimated asa/C ′ ∼ 101–102, b/a ∼ 1 [22].

It is of importance that the averaged strain tensor (8) describing the martensite variant
has monoclinic symmetry, while the symmetry of(u0

2, u
0
3) is tetragonal (for more details

see [19, 20]).
The value ofα is prescribed by the type of periodic structure. For definiteness, consider

the valuesα = 1/3 andα = 2/3 which are inherent to the frequently encountered R9
structure. The strains (8) must now be substituted into (3) and (7). As long as the inequality
u0 � 1 holds for the martensitic phase transitions, the averaged strains accompanying
the appearance of the R9 structure withα = 1/3 may be approximated by the formula
uM3 =

√
3uM2 ≈ −u0/2. In this approximation the averaged strain tensor has orthorhombic

symmetry (̄εxy ≈ 0). Substitution ofuM2 anduM3 into (4) and (5) results in the expressions
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where

K̃ = K + (18δ2
1/C

′)− (δ2
2/2C44) M0 ≡ |M |.

(The obvious conditionm2 = 1 was taken into account and the constant summand inF̃A
was omitted.)

The energy

F (xz) = δ1u0(m
2
z −m2

x)−m ·HM0 (10)

corresponds to the valueα = 2/3.
It is evident now that the energy of each variant of the R9 structure may be expressed

in the form

F = F̃A + F (ij)
F (ij) = −A(m2

i −m2
j )−m ·HM0

(11)
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where the constantA = δ1u0 describes the magnetic anisotropy induced by the averaged
strains,i, j = x, y, z, i 6= j .

For definiteness, we takeA > 0, and, therefore, subscripti marks the ‘easy axis’ for
magnetization andj corresponds to the ‘hard axis’.

The magnetic anisotropy of each martensitic structure, whose symmetry is close to
orthorhombic, may be described by the expression

F = A1m
2
i + A2m

2
j . (12)

The concrete type of the structure indicates the dependencesA1,2(δ1, δ2, u0).

3. Magnetization and magnetic susceptibility of martensite

It is common knowledge that the process of magnetization of a ferromagnetic specimen
is accompanied by the shifting of the magnetic domain walls, and by the rotation of the
vectorm. As was pointed out in [23], the motion of magnetic domain walls may be
hindered by the inhomogeneous structure of martensite, and the rotation ofm may be the
dominant mechanism of magnetization of the specimen. In the case under consideration,
this viewpoint can be substantiated in the following way.

Let the variant of martensite with the easy axisx border on the variant with the easy
axis y. In zero magnetic field the magnetic moment of the first variant is directed alongx
and the moment of the second one is parallel toy. Under such conditions, these variants
are equivalent magnetic domains. In a strong magnetic field applied alongx, both magnetic
moments are aligned alongx. Now the energy of the first variant differs from the energy of
the second one by1F = 2A, and, therefore, the variants represent two different magnetic
phases. The first one is stable for 0< Hx < ∞, while the second one is stabilized for
Hx > H1, whereH1 is the field of the spin-orientational phase transition. Such transitions
are usually treated as a rotation of the vectorm from they- to thex-direction.

If one martensite variant is occupied by two ferromagnetic domains with antiparallel
moments, the wall separating these domains can move easily, and one of the domains will
disappear at some magnetic field valueHc of the order of the coercive force of the specimen.
It may be expected, hence, that within the intervalHc < H < H1 every variant will be
occupied by the only magnetic domain, and the magnetic moment of the domain will rotate
under the action of the magnetic field. Experimental data obtained in [8] and [7] allow us to
conclude that for Ni2MnGa alloy the fieldH1 is at least 20 times greater than the coercive
force (see section 4).

For the sake of simplicity, assume thatK̃ � A. (This assumption will be justified in
section 4 for the Ni2MnGa crystal, which typifies ferromagnetic martensites.) In such a
case, the energỹFA may be disregarded and the angleψ between the stationary magnetic
field and vector them of the variant may be found from the condition

∂F (ij)

∂ψ
= 0. (13)

If the hard axis of the variant is parallel to the applied field, the energy (11) can be
expressed as

F (ij) = A(cos2ψ − sin2ψ)−HM0 cosψ (14)

and the condition (13) yields

cosψ ≡ cosψ1 =
{
H/H1 for H < H1

1 for H > H1
(15)
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whereH1 = 4A/M0.
When both the easy and hard axes of the variant are perpendicular to the magnetic field,

F (ij) = −A sin2ψ −HM0 cosψ (16)

cosψ ≡ cosψ2 =
{
H/H2 for H < H2

1 for H > H2
(17)

whereH2 = 2A/M0.
Finally, if the easy axis is directed along the field direction,

ψ ≡ ψ3 =
{

0, π for H < Hc

0 for H > Hc.
(18)

Generally speaking, in a field parallel to the [100] direction of a cubic crystal, all of the
possibilities mentioned above are equally likely. AtH > Hc the averaged magnetization
of a martensitic phase may be approximated by the formula

〈M 〉 = 1

3
M0(T )(1+ cosψ1+ cosψ2)n (19)

wheren is the unit vector in the direction of the field.
The magnetic susceptibility〈χ〉 of a martensite may be obtained in a routine way from

(11). At K̃ � A the resultant formula is

〈χ〉 = 1

6

[
χ(zy) + χ(yz) + χ(zx) + χ(xz) + χ(yx) + χ(xy)] (20)

where theχ(ij) are the susceptibilities of the variants with the energiesF (ij). When the
stationary magnetic field is directed alongx,

χ(zy) =
(
χ2 0 χ8

0 χ1 0
χ8 0 χ6

)
χ(yz) =

(
χ2 χ8 0
χ8 χ6 0
0 0 χ1

)

χ(zx) =
(
χ1 0 χ7

0 χ2 0
χ7 0 χ5

)
χ(xz) =

( 0 0 0
0 χ4 0
0 0 χ3

)

χ(yx) =
(
χ1 χ7 0
χ7 χ5 0
0 0 χ2

)
χ(xy) =

( 0 0 0
0 χ3 0
0 0 χ4

)
(21)

where

χ1 = χ2/2= M2
0/(4A)

χ3 = χ1M0/(M0+ χ1H)

χ4 = χ2M0/(M0+ χ2H)

χ5 = χ1 cotan2ψ1

χ6 = χ2 cotan2ψ2

χ7 = −χ1 cotanψ1

χ8 = −χ2 cotanψ2.

The expressions forχ(zx) andχ(yx) are valid whileH < H1, and the formulae forχ(zy)

andχ(yz) are valid whenH < H2.
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At H > H1,

χ(zx)zz = χ(yx)yy = χ1M0/(χ1H −M0)

χ(zx)yy = χ(yx)zz = χ2M0/(χ2H −M0).

At H > H2,

χ(zy)zz = χ(yz)yy = χ2M0/(χ2H −M0)

χ(yz)zz = χ(zy)yy = χ1M0/(χ1H +M0/2).

All of the other components of these tensors are equal to zero in the high-field range.
It is worth recalling that the expressions (19)–(21) were obtained for the R9 structure

assuming thatA > 0 andH > Hc, whereHc is of the order of the coercive force of the
martensite. These expressions are directly applicable only to a single crystal in a magnetic
field parallel to the [100] direction. Nevertheless, it will be shown later that the formula (19)
agrees semi-quantitatively with the experimental data obtained for both single crystals and
polycrystals of Ni2MnGa ferromagnet. On making the changeA → −A, the expressions
(14)–(21) became valid forA = δ1u0 < 0.

The other martensitic structures may easily be considered with the help of the energies
(12) and strains (8). The consideration results in the dependencies (15), (17), and (19) with
H1 = 2|A1− A2|/M0, andH2 = 2|Á|/M0, whereÁ ≡ min{A1, A2}.

In the case of R7 structure withα = 2/7 or 5/7, A1 = 6δ1u0/7 andA2 = −9δ1u0/7.
For the five-layer structure withα = 1/5 or 4/5, the values of the anisotropy constants are
A1 = 3δ1u0/5 andA2 = −9δ1u0/5.

So, the periodic martensitic structure may be characterized by the ratioH1/H2: for
the R9 structureH1/H2 = 2; for the R7 structureH1/H2 = 5/2 or 5/3 (at δ1u0 < 0 and
δ1u0 > 0 respectively); and for the five-layer structureH1/H2 = 4 or 4/3 (at δ1u0 < 0 and
δ1u0 > 0 respectively).

4. Analysis of existing experimental data

The results of phenomenological analysis may be compared with the experimental data
obtained for Ni2MnGa ferromagnet in [1, 5, 8].

The experimental〈M (H)〉 dependence saturates atH > Hs ≈ (8–12)× 103 Oe [8, 7].
In accordance with (15) and (17)–(19), we will takeHs = H1 = 2|A1 − A2|/M0. The
experimental valueI (TM) ≡ |〈M (TM)〉|/ρ ≈ 85 G cm3 g−1 [1] corresponds to the
magnetizationM0(TM) ≈ 690 G which results in the following range of values for the
magnetic anisotropy constants of martensite:

|A1− A2| ≈ (2.8–4.2)× 106 erg cm−3. (22)

(ρ ≈ 8.1 g cm−3 is the mass density of Ni2MnGa alloy.)
As far as we are aware, the values of the anisotropy constants of nickel-based

ferromagnets are of the order of 105 erg cm−3 or less (see, e.g., [23]). Therefore, the
magnetic anisotropy of the martensitic phase of Ni2MnGa seemingly exceeds that of the
austenitic phase (A1,2� K̃).

The longitudinal (with respect to the applied field) magnetostrictionλ of a macro-
scopically isotropic specimen is expressed by the well-known formula

λ = 1

2
λs [3(m · n)− 1] (23)

whereλs = 2δ1/C
′.
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At H > Hs , the vectorn is parallel tom, and the transverse magnetostrictionλ⊥ may
be estimated as

λ⊥ ≈ λ/2= |A1− A2|/(2C ′u0) ≈ (2–3)× 10−5 (24)

(C ′ ≈ 6× 1011 erg cm−3, u0 ≈ 0.12 [24], δ1 = |A1− A2|/(2u0) ∼ 107 erg cm−3).
The experimental valueλ⊥ ≈ 2.5× 10−5 [8] measured at the temperatureT ≈ TM

belongs to the estimated interval (24). This is the main confirmation that the proposed
theoretical model is reasonable.

The experimental dependencesI (T ) were observed for the polycrystalline specimen at
the field valuesH = 1, 4, 8, and 16 kOe [1] and for the single crystal atH = 0.82 and
15 kOe [5]. It is easy to compute theI (T ) dependences from (15), (17), and (19). The
dependenceM0(T ) involved in (19) may be approximated by standard function

M0(T ) = M0(0)y(T ) y(T ) = tanh[TCy(T )/T ]. (25)

Figures 2(a) and 2(b) show the results of computations forI (0) = 92 G cm3 g−1,
TC = 376 K and two values of the martensitic phase transition temperature:TM = 202 K (for
the stoichiometric Ni2MnGa composition [1]) andTM = 285 K (for the nonstoichiometric
composition of the alloy [5]). Solid lines correspond to the five-layer martensitic structure,
while dashed ones were computed for the 7R structure. Both structures were observed
experimentally in Ni2MnGa alloy [21]. The experimental points obtained in [1] and [5] are
presented in figures 2(a) and 2(b) for comparison.

5. Conclusions

(i) The drastic changes in the magnetic properties of ferromagnets occurring in the
vicinity of the martensitic phase transition may be satisfactorily described within the
framework of simple phenomenological theory. As the theory shows, these changes are
mainly caused by the inhomogeneous strains arising below the phase transition temperature.

(ii) For the Ni-based and Fe-based alloys, the strain-induced magnetic anisotropy of
martensite significantly exceeds the anisotropy of cubic austenite. As a consequence, over
a wide range of applied magnetic fields the inhomogeneous strains govern the process
of magnetization of martensite. This, in turn, enables a theoretical estimation of the
magnetoelastic constant to be made from the field dependence of the magnetization.

(iii) The estimated magnetostriction of Ni2MnGa alloy is close to the value measured
in [8]. The theoretical temperature dependences of the magnetization are in agreement
with the experimental data [1] obtained for Ni2MnGa alloy atH = 4, 8, and 16 kOe
(see figure 2(a)). The disagreement of the theoretical curve with the magnetization values
measured atH = 1 kOe forT < TM is seemingly caused by the polycrystalline structure
of the specimen examined in [1]. The experimentalM(T ) dependence observed in [5]
for the single crystal atH = 0.82 kOe is comparatively close to the theoretical one (see
figure 2(b)). In this case some disagreement between theory and experiment occurs for both
intervalsT < TM andT > TM . This shortcoming of the theoreticalI (T ) dependence is not
surprising, because the fieldH = 0.82 kOe is smaller than the saturation fields of austenite
(Hsm ' 1.5 kOe [7]) and martensite (Hs = 8–12 kOe [7, 8]), while the computations
were carried out for the valueI (0) = 90 G cm3 g−1 corresponding to zero temperature
and H = 15 kOe. Nevertheless, a theoretical jump of the magnetization atT = TM ,
H = 0.82 kOe is equal to the experimental one.

The coincidence of the estimated value of the magnetostriction of the Ni2MnGa alloy
with the value measured in [8] confirms that the proposed phenomenological model is
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Figure 2. Temperature dependences of the magnetizations of Ni2MnGa alloys withTM = 202 K
(a) andTM = 285 K (b). The theoretical curves correspond to the five-layer periodic structure
(solid lines) and 7R structure (dashed lines). The curves are computed forH1 = 11.5 kOe,
H1 = 1, 4, 8, and 16 kOe (a) and forH1 = 11.5 kOe, H = 0.82 and 15 kOe (b). The
experimental data obtained in [1] are represented for comparison by crosses (H = 1 kOe),
triangles (H = 4 and 8 kOe), and solid circles (H = 16 kOe). The values measured in [3] are
represented by the open squares (H = 0.82 kOe) and circles (H = 15 kOe).

reasonable, but it should be stressed that the accurate computation of〈M (T )〉 dependences
cannot be carried out in the framework of the pure phenomenological theory, because both
theM0- and theλ⊥-values change abruptly within the temperature range of the martensitic
transformation [1, 8, 7]. This effect must be attributed to the change of the quantum electron
structure of the crystal during the phase transition.
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